Code: AE5T6FE1, IT5T5FE2, CS5T5FE3, EE5T6FE3, EM5T6FE2

III B. Tech - I Semester – Regular Examinations - November 2014

ROBOTICS (Common for AE, CSE, IT, EEE, ECM)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- 1. a) Briefly describe the functions of four basic components of a robot.

 7 M
 - b) What is degree of freedom? Explain the DOF of different types of robot arms.

 7 M
- 2. How do you classify robot end-effectors? Discuss in detail. 14 M
- 3. a) State and prove the properties of rotation transformation matrix.

 7 M
 - b) Perform the following operations for the vector 8i+3j-k.
 - i) Rotate the vector about y-axis by 30°
 - ii) Translate the vector along z-axis by 10 units and
 - iii) Rotate the vector about z-axis by 60°.

7 M

4. Derive the forward kinematics equation using the DH convention for the three link planar manipulator (RRR) shown in the figure 1.

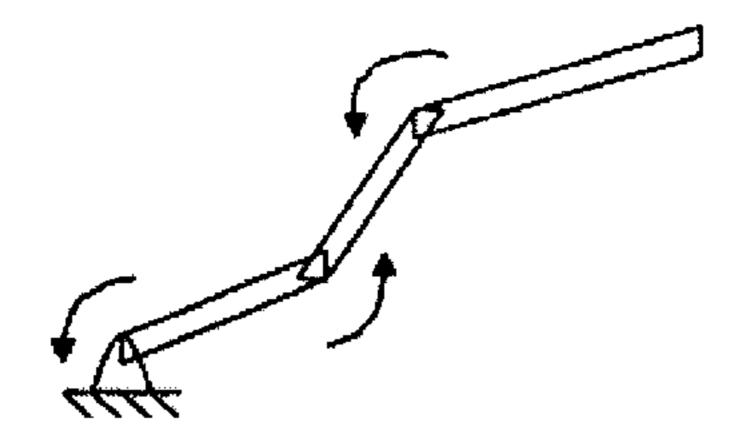


Figure 1

- 5. Define a geometric Jacobian. Compute the Jacobian matrix for a planar R-R robotic manipulator.

 14 M
- 6. a) Explain the various steps in trajectory planning. 7 M
 - b) A one-degree of freedom manipulator with rotary joint is to move from 113° to 210° in 7 seconds. Find the coefficient of the cubic polynomial to interpolate a smooth trajectory. Plot the position, velocity and acceleration variation as a function of time.

 7 M
- 7. What is the function of a sensor? Explain about tactile, proximity and range sensors.

 14 M
- 8. a) Explain the use of robots in material handling applications. 7 M
 - b) Discuss the applications of a robot in automated assembly operations.

 7 M